
SBFT 2023, Melbourne, Australia
Robin David <rdavid@quarkslab.com>
Christian Heitman <cheitman@quarkslab.com>
Richard Abou Chaaya <rabouchaaya@quarkslab.com>

PASTIS: A Collaborative Approach to
Combine Heterogeneous Software Testing

Techniques

What testing approach using? (for security)

Greybox Fuzzing

Testing approaches relying on executing
repetitively pseudo-randomly generated
inputs on the program to test. Relies on
an instrumentation to obtain feedback on
execution and further mutate the input if
satisfactory.

+ Very fast
+ Nowadays very optimized

(constants, dictionary etc..)

– brutal approach
– No direct link between input and

path taken

What testing approach using? (for security)

Greybox Fuzzing

Testing approaches relying on executing
repetitively pseudo-randomly generated
inputs on the program to test. Relies on
an instrumentation to obtain feedback on
execution and further mutate the input if
satisfactory.

+ Very fast
+ Nowadays very optimized

(constants, dictionary etc..)

– brutal approach
– No direct link between input and

path taken

Dynamic Symbolic Execution
(aka Whitebox Fuzzing)

Formal approach representing the path
taken in the program as a mathematical
formula that can be used to solve
constraints in order to cover other paths.

+ Very precise path modeling
+ Can solve hard paths

– very slow
– Require precise semantic

modeling

Which approach to choose ?

Which approach to choose ?

⇒

Outline

➤ Performed an experimental study of how combining different approaches
together in order to assess the relevance of the combination.

Takeaway

Subsequent Contributions

Goal
Combining greybox and whitebox fuzzing to leverage

their respective strengths (on OSS software).

TritonDSE PASTIS
(whitebox fuzzer) (ensemble fuzzing framework)

(Also a study on how to
configure TritonDSE)

https://github.com/quarkslab/tritondse
https://github.com/quarkslab/tritondse
https://github.com/quarkslab/pastis

Research Questions

RQ1
Can DSE help a greybox fuzzing engine in a

collaborative environment?

RQ2
Can a collaborative approach like ensemble
fuzzing reach better coverage than the sum

of its parts ?

Ensemble Fuzzing Modes

Half Duplex
Aggregates all inputs from engines and
computes the resulting coverage (sum)

(not sharing mode)

Full Duplex
Maximal input sharing mode. Computes the

resulting coverage (sum with info sharing)
(sharing mode)

Any number of agents can connect and from anywhere (comms in TCP)

All communications performed over the network using a communication library
called libpastis

One can add a new fuzzing agent by using libpastis and implementing few callbacks

How ?
Enable exchanging inputs* between engines

via a broker which perform configuration dispatching and
inputs sharing (depending on mode). It aggregates all results.

* More in-depth information sharing have been considered but hardly suitable for heterogeneous approaches.

Details:

Supported Fuzzers

Honggfuzz

Greybox fuzzer developed by
Robert Swiecki.

Modifications:
● dynamic input injection
● statistics retrieval

Instrumentation backend:
● source-based (clang, gcc)
● QBDI (binary-only targets)

AFL++

Greybox fuzzer developed as a
rewrite of AFL in C++.

Modifications: ∅

Instrumentation backend:
● source-based (clang, gcc)
● QEMU (binary-only targets)

Supported whitebox fuzzer ⇒ TritonDSE

⇓

TritonDSE

Low-level framework
Need to provide
manually every

instructions to execute
symbolically.

High-level framework.
Provide all primitives to

perform exploration
and to craft a

whitebox fuzzer

Overview Collaboration

Benchmark Results

Coverage Results

Coverage Results

Very good results

Coverage Results

Very good results
Slight improvement in
half-duplex (AFL++, TritonDSE
find input that HF don’t)

Coverage Results

Very good results
Slight improvement in
half-duplex (AFL++, TritonDSE
find input that HF don’t)

Full-duplex outperform on
two targets (solely)

Coverage Evolution (24h)

Coverage Evolution (24h)

Full duplex does not
outperform.
(HF accounts for most of
half-duplex results)

Zoom (1/3): Libjpeg

Zoom (1/3): Libjpeg

Full-duplex
outperform
(only HF and AFL++)

Zoom (2/3): Libpng

Zoom (2/3): Libpng

Temporarily
outperform

(short-term campaign)

Might explain why
PASTIS performs well
on competition bug

finding

Zoom (3/3): Openthread

Zoom (3/3): Openthread

TritonDSE unlocks
the coverage

Conclusion
&

Future Work

Conclusions & Future Work

On few targets DSE helps (RQ#1) and the collaborative fuzzing can provides
better results on some targets (RQ#2)

Honggfuzz is very effective and produces numerous inputs
(half/full duplex gain is marginal)

Contrasting instrumentation (HF vs TritonDSE)

Conclusion:

⇒ Pure binary-only experiments ! (already ongoing..)

Future Work:

⇒ Leveraging the Fuzzbench framework (for averaged results computation or to cast
PASTIS results into fuzzbench format)

Questions ?

